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theory for heat flux was obtained within 2 per cent Figure 1 It has been found in the course of the experimentations 
shows that within this accuracy no specific value for the that noncondensable gases are continuously generated. It is 
condensation coefficient can be concluded. However, values therefore felt that some of the low condensation coefllcients 
as low asf = 0.10 can be excluded, and for the present range quoted in the literature for this class of liquids may be 
of vapor pressures the condensation coeficient is indicated attributed to the presence of noncondensable gas 
to lie in the range 0.25 < f < 10. A narrower range could 
have been determined if operation at lower vapor pressures ACKNOWLEDCRMENT 
had succeeded. 
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FIG. 1. Heat flux vs. temperature difference 

(I.R. = interfacial resistance). 
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NOMENCLATURE Greek symbols 

x, Y, 
u, 0, 

Gr,, 
9. 

;: 
F, 
G 
CP 

distances along and perpendicular to the plate ; 
velocity components along x and y directions ; 
local Grashof number; 
acceleration due to gravity ; 
temperature ; 
non-dimensional stream function ; 
transformed stream function in the inner layer; 
transformed stream function in the outer layer; 
specific heat at constant pressure. 

a constant; 
stream function ; 
Prandtl number; v/a ; 
local dissipation number defined by (2) ; 
co-efficient of volume expansion of the fluid ; 
similarity variable ; 
density ; 
viscosity ; 
kinematic viscosity ; 
thermal diffisivity ; 

l Research student. 
temperature excess ; 
non-dimensional temperature function ; 



240 SHORTER COMMUNICATIONS 

t-2 stretched similarity variable ; 
Q, transformed temperature function. 

Subscripts 
W, wall condition ; 

04’ 
condition at large distance from the plate; 
no dissipation ; 

1, . first-order dissipation effects. 

1. INTRODUCTION 

GE~HART [ 1] investigated effects of viscous dissipation in 
natural convection about semi-infinite flat vertical surfaces 
(isothermal). He started with the usual equations for con- 
servation of mass, momentum and energy, namely, 

!!!+d”=o, 
ax dy 

ae ae a28 y au 2 
u-+v-=a-+- - , 0 ax ay ay* cp ay 

u = v = 0, e = 2, - t,, y = 0, 

u+o, e+o as y-+co, J 

(1) 

where u, v are the velocity components, B is the temperature 
excess (t - t,), x is measured from the leading edge along 
the plate and y is the distance out perpendicular to the plate, 
the plus and minus signs apply for heating and for cooling 
of the fluid respectively and the other symbols have their 
usual meanings. He then developed perturbation-type 
similar solutions of (1) given by 

ti = 242) v(Gr,)* (fo + 44 + . .I, 

Gr, = lsBx3(t, - t,)/v2 1, (2) 

where f’s and I#J’s are functions of VI alone satisfying 
ordinary differential equations discussed in detail in [i]. 
Assuming fi = 0, Gebhart solved these equations for 
D = lo-*, @72, 10’ and lo4 and observed that the ratio 

$;(O)/&,(O) closely approached an asymptotic value in the 
Prandtl-number interval lo2 to 104. We shall in what 
follows obtain solutions for large values of c in powers of 
(r-* and substantiate Gebhart’s conjecture. 

2. ANALYSIS 

It is known that for high Prandtl-number fluids heat- 
transfer takes place within a very thin layer that lies well 
within the hydrodynamic boundary layer. Authors including 
Stewartson and Jones [Z], Levich [3], Morgan and Warner 
[4] have shown that the thickness of the temperature layer 
for freeconvection flows is proportional to O-*. However, 
the best technique for dealing with such problems fully is 
provided in [2]. It essentially consists in dividing the whole 
region into two boundary layers-one of thickness O(o-*) 
in which the temperature difference is brought to zero and 
one of thickness o(6) in which the velocity parallel to the 
surface is brought to zero. For convenience, these two layers 
will be called the inner and the outer layers respectively. 
We shall define after [Z], different variables as follows. 

Inner layer : 

i, = (3c)f 5 

fo = (3Q F&i), 

$0 = @O(ii), 

Outer layer : 

(3) 

r2 = r(3c)-* ‘1, 

fo = r(3c)-* G&,h (4) 

$0 = d, = 0, 

where y is a suitable constant to be specified later. The 
corresponding equations are 

Fd’ + 9, + $ {3F, Fb’ - 2(&)2} = 0, (5) 

@b’ + Fog0 = 0, (6) 

@y + Fowl - $Fb@, + a&)* = 0, (7) 

G;’ + 3G, Gb’ - 2(Gb)* = 0. (8) 

In the above, a prime means differentiation with respect to 
the appropriate independent variable. Evidently the 
boundary condition at infinity is redundant for F,, also 
those on the surface for G,. By the method of matched 
asymptotic solutions it is found that solutions in the follow- 
ing form exist : 
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F, = F,, + (3a)-+ F,, + . . . F;,(O)= 1.08506, Fe,(a)= 0.88425, @&,(O)= - 0.54023, 

@o = Qoo + (3a)_* eOi + . F;,(O)= -0.70013, &,(cc)= -540819, @&(0)=0.24542, 

8, = a,, + (3a)-*@,, + . . . . G;,(O)= - 1.54079, G;,(O) = - 1.65434, @;,(0)=@12948, 

G, = G,, + (3u)-* G,, + . . . . @‘i i(0) = - 0.24238. 

The relevant boundary conditions are The above results show that #i(O)/&,(O) attains the value 
F&O) = 0, F&(O) = 0, Fdo(a) = 0; -0.2195 for u = 100 and the value -02377 for u = 10000 

G,,(O) = 0, G&,(O) = 1, Gbc(cc) = 0; 
compared to the values -0.2226 and -0.2378 obtained by 
Gebhart. As u + cc this ratio becomes -0.2397. This is 
the value sought by Gebhart. 
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F,,(O) = 0, Fb,(0) = 0, F;,(a) = y3Gb’,,(0); 

G,,(O) = +,(a) - ~5im, 

Gb,(O) = ;&(a) - ii, Fb’,(=)), 

COi(oz) = 0; 

@00(O) = 1, @oo(a) = 0; 4J01(0) = 0, &(a) = 0; 

@l,(O) = 0, @lO(cc) = 0; @,,(O) = 0, @,,(a) = 0, 1. 
where y2 = &(cc), [i, = the value of [i at the boundary 
of the inner layer. 2. 

3. SOLUTIONS AND CONCLUSIONS 
3. 

From numerical computations performed on the elec- 4. 
tronic computer IBM 7094” at Imperial College it is found 
that 
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